Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Nat Med ; 28(4): 823-830, 2022 04.
Article in English | MEDLINE | ID: covidwho-1684093

ABSTRACT

The mRNA-1273 vaccine for coronavirus disease 2019 (COVID-19) demonstrated 93.2% efficacy in reduction of symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in the blinded portion of the Phase 3 Coronavirus Efficacy (COVE) trial. While mRNA-1273 demonstrated high efficacy in prevention of COVID-19, including severe disease, its effect on the viral dynamics of SARS-CoV-2 infections is not understood. Here, in exploratory analyses, we assessed the impact of mRNA-1273 vaccination in the ongoing COVE trial (number NCT04470427) on SARS-CoV-2 copy number and shedding, burden of disease and infection, and viral variants. Viral variants were sequenced in all COVID-19 and adjudicated COVID-19 cases (n = 832), from July 2020 in the blinded part A of the study to May 2021 of the open-label part B of the study, in which participants in the placebo arm started to receive the mRNA-1273 vaccine after US Food and Drug Administration emergency use authorization of mRNA-1273 in December 2020. mRNA-1273 vaccination significantly reduced SARS-CoV-2 viral copy number (95% confidence interval) by 100-fold on the day of diagnosis compared with placebo (4.1 (3.4-4.8) versus 6.2 (6.0-6.4) log10 copies per ml). Median times to undetectable viral copies were 4 days for mRNA-1273 and 7 days for placebo. Vaccination also substantially reduced the burden of disease and infection scores. Vaccine efficacies (95% confidence interval) against SARS-CoV-2 variants circulating in the United States during the trial assessed in this post hoc analysis were 82.4% (40.4-94.8%) for variants Epsilon and Gamma and 81.2% (36.1-94.5%) for Epsilon. The detection of other, non-SARS-CoV-2, respiratory viruses during the trial was similar between groups. While additional study is needed, these data show that in SARS-CoV-2-infected individuals, vaccination reduced both the viral copy number and duration of detectable viral RNA, which may be markers for the risk of virus transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , SARS-CoV-2/genetics , United States
2.
J Virol ; 95(23): e0131321, 2021 11 09.
Article in English | MEDLINE | ID: covidwho-1434895

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has led to growing concerns over increased transmissibility and the ability of some variants to partially escape immunity. Sera from participants immunized on a prime-boost schedule with the mRNA-1273 COVID-19 vaccine were tested for neutralizing activity against several SARS-CoV-2 variants, including variants of concern (VOCs) and variants of interest (VOIs), compared to neutralization of the wild-type SARS-CoV-2 virus (designated D614G). Results showed minimal, statistically nonsignificant effects on neutralization titers against the B.1.1.7 (Alpha) variant (1.2-fold reduction compared with D614G); other VOCs, such as B.1.351 (Beta, including B.1.351-v1, B.1.351-v2, and B.1.351-v3), P.1 (Gamma), and B.1.617.2 (Delta), showed significantly decreased neutralization titers ranging from 2.1-fold to 8.4-fold reductions compared with D614G, although all remained susceptible to mRNA-1273-elicited serum neutralization. IMPORTANCE In light of multiple variants of SARS-CoV-2 that have been documented globally during the COVID-19 pandemic, it remains important to continually assess the ability of currently available vaccines to confer protection against newly emerging variants. Data presented herein indicate that immunization with the mRNA-1273 COVID-19 vaccine produces neutralizing antibodies against key emerging variants tested, including variants of concern and variants of interest. While the serum neutralization elicited by mRNA-1273 against most variants tested was reduced compared with that against the wild-type virus, the level of neutralization is still expected to be protective. Such data are crucial to inform ongoing and future vaccination strategies to combat COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Pandemics/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , 2019-nCoV Vaccine mRNA-1273 , Adult , Antibodies, Viral/immunology , Female , Humans , Male , Mutation , Neutralization Tests , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL